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ABSTRACT

The results of a study of unsteady pressure distributions in a two-

dimensional cascade of blades caused by spatial inflow velocity varia-

tions are presented. An existing incompressible, inviscid theory which

employs a simplified vortex model in conjunction with the assumptions of

thin airfoil theory has been used by Henderson (16) and Bruce (17) to

derive expressions for the unsteady response, which includes the cascade

unsteady lift and pitching moment. An alternative way to obtain these

unsteady response parameters is to establish the expression for the

unsteady pressure distribution. The unsteady lift and pitching moment

are calculated by direct numerical integration over the unsteady pres-

sure difference across the airfoil chord. Comparison of the computed

theoretical results using these two approaches shows satisfactory

agreement except when the wavelength of the velocity variations

approaches the cascade blade spacing. Good agreement is also observed

between the existing measured and predicted data. The effects of design

parameters of a cascade, such as space-chord ratio, maximum blade

camber, and mean incidence angle, on the unsteady response are presented

and discussed. Acezic:i Or
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CHAPTER I

INTRODUCTION

1.1 State of the Art

The turbomachine is a significant component in today's technologi-

cal society. For example, this device is used almost universally in

power generation and in aircraft and marine propulsion.

In the real world, the flow in a turbomachine is time dependent;

however, most designs and previous research in turbomachines have been

conducted on a steady or time-mean basis. Dean I) has shown that the

flow relative to the casing of a turbomachine must be time dependent or

unsteady if energy is to be transferred between the fluid and the rota-

ting blades. Also, both spatial and temporal variations can occur in

its inflow velocity as caused by the wakes of upstream blade rows, inlet

flow distortions, wall boundary layers, etc. The motion of the rotating

blades through these spatial and temporal velocity variations results in

uns.teadv pressures with forces and moments being generated on the blades.

The stator blades, which int .ract with the moving wakes of upstream

rotor bladCs, also encoutllLr In unsltedy flow. The existence of these

unsteady pressures d,,,d s to three umnisired effects: blade vibration

( , radii ,ed noi:, (3). ,I ,d performn,,e de).radat ion

Tlhc; uitdsirable e ff ts- t ar (a setri prolle)m. The11 empl ovmnt Of

,I r:;e numbtemh(-rs of Lurboliachil s with ino:rCeaMiu, power trainsmi :;ionis has

resulted in intolerable, nL i:;e- and vibrition levels. Coniderable, effort

hi:; ben .111d cont inues to he devoted to the understand in; of s. uch [lows



and to provide methods with which the turbomachinery designer can pre-

dict the unsteady response of the blades as a function of the design

parameters. One aspect of this affort is the study of unsteady response

of a turbomachine to spatial velocity variations. Various mathematical

models are employed to obtain the theoretical solutions. These models

usually replace the airfoils by a distribution of vorticity on the

blades and in their wakes. The strength of the vorticity and the

resulting induced velocities are then determined to satisfy the boundary

conditions on the surface of the airfoils. This specifies the unsteady

pressure distribution and, hence, the unsteady lift and moment. Similar

solutions are also obtained by representation of blades by distribution

of potential flow sources and sinks and doublets (5, 6). The earliest

unsteady analyses are performed for an isolated airfoil. Von Kdrman and

Sears (7) and Sears (8) determine the unsteady lift of an isolated flat

plate airfoil subjected to a small sinusoidal velocity disturbance nor-

mal to the chord. The solution of this problem results in the familiar

Scars response function. Kemp and Sears (9, 10) extend the original

Sears analysis for an isolated airfoil to calculate the unsteady lift of

the rotors and stators in turbomachincs. This method considers only the

unsteady interaction of the other airroils in the cascade. The unsteady

interaction and, hence, the effect of cascade spacing are neglected by

Kemp and Sears.

Although the response of an airfoil to a chordwise disturbance is

usuallv oF se cond order compa rid to that of a normal dis turbance, there

are situ ations in which the configuration of a turbomachine b lade row is

such that Lo response of the airfoil to the chordwise dizL1rbance is

nearly equivalent to that of the normal distirhance. 11orlock (11)

i
- -



3

reported a solution for the unsteady lift and moment of an isolated flat

plate airfoil subjected to a disturbance having components both parallel

and normal to the chord. The solution results in the Hiorlock response

function and has a form similar to that of the Sears function for a nor-

mal disturbance.

Holmes (12) and Naumann and Yeh (13) extend the previously developed

isolated airfoil analyses to consider the effects of blade camber.

Naumnan and Yeh present a series of design charts which show the varia-

tion of unsteady lift as a function of blade camber, stagger angle, and

rCeduced frequency and assume the turbomachine blade can be represented

by a sinle airfoil. Holmes further summarizes these results and

evtends them, by. solving t'he generil ized disturbance case for the pres-

sore- di1st ribut ion and thec pitchinrg moment.

These anlalv'nes ire of que-stionable validity for representation of a

tLU rl)e:11a C h1i 12 S i 11C IUe60e t h;x do no aC onn1 L for tilie otf foci oil a lyon b lade

Of f hiletuat i0nS occLurring,, on other blades of the same blade row. This

case oC~de ti fret has an1 influkence on: thle uns teady force act in- onl a blade

4 row, part i eul a r n t. low valu tes of space-chord ratio, that is, igh01

so lid it.%, and( low v i lit, ; of rL'dneed IreqnCney. The analys ofc a

casca de of a: i r 1o I Is ian; beenl1)'I pefoUrmed ill al manner1 17Sillilar to0 thIa t o f an

'A

ist)lated airfoil, but it inc ludes the effcct.S Of adjaicent blades an11d

thecir wakes. Severail LlicoreLic1 j IaalIVsen , Wlitelread (1 4) , Schiorr and

Relv I I I r slnl mon an irai ;i n i iir 1) , anli Sini Li 1 7) lllk have bo

oritoed protd l the unst eadv ltpon of a thin, two-dimelise folal

castce of a birfoil:; oetid t in ii iiivacid. incompressibot, spatralll

yorm l flt.t.h

fucinadhsafrtiia othto h er ucinfranr



The analyses of References (14) and (16) use different representa-

tions of the blade in the cascade. In Reference (14), a finite number

of vortices, five to eight, are placed on each airfoil, whereas in

Reference (16) a continuous distribution of vorticity is used on the

reference airfoil, that is, the one on which the unsteady lift is calcu-

lated, and a single vortex is used on the adjacent airfoils. In both

analyses, a continuous distribution of wake vorticity is used for each

airfoil. The results of References (14) and (17) produce identical

results but assume the cascade to be composed of flat plate airfoils;

that is, the effects of camber and angle of incidence are neglected.

The analysis presented in Reference (lb) can account for the effects of

camber and angle of incidence.

Henderson's analysis (18) predicts a resonance effect, that is, a

sharp change in the unsteady lift when the disturbance wavelength equals

the blade spacing. Bruce (19) further extends this theory to give an

expression for unsteady pitching moment.

In recent years, with the development of instrumentation to conduct

dynamic measurements, some experimental results have become available

for isolated airfoilsa to check the validity of the predicted results.

However, very few direct experimental results, such as unsteady pressure

di;t ribution or lift, have been available to check the existing theo-

ret ical analyses of a cascade of airfoil:;. The lack of experimental

dat a i:; attributed to tle compl Cxity in producing a suitable flow and

tilt' illc'el;Uirun ut'llli of inn t cad ' parameters.

An cxptrimentatl re;n it has recently be0n publ ished by Gallus

et a I . (20) For tilt ms'aLlrem t :3 of flut uatin pressures on tile midspan

profilc, rI a.:t'5 0 ,1 cil'imp r'os r b ade row. The shapes of the wakes or

J.
4 .>.,

I~
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inflow distortions produced by upstream stage are also measured.

Another typical experiment has been conducted by Satyanaravana (30j. An

instrumented two-dimensional cascade was mounted in a gust tunnel which

produced a sinusoidal flow onto the blades. This enables the fluctua-

ting lift to be measured. The results of these two experimental studies

can be an indirect check of the validity of the present analysis.

1.2 Relevance of This Study

Using the theory developed by Henderson (18), the present study

undertakes to solve the problem of unsteady response of a turbomachine

to spatial velocity variations. In Henderson's analysis, the unsteady

response of a cascade of airfoils is described in terms of unsteady

lift. Mathematically, this is accomplished by evaluating the integrals

that result from the integration of the unsteady pressures over the

entire airfoil chord. Similir procedures have been used by Bruce j[19)

to determine the uns cady moment. The expression for unsteady pressure

distributi(on, however, is left in implicit form in both of these

stud ies.
.j

The unst eadv I ift and pitching momlent occurring on a turbomachine

hMade row can 1ho determined if the unsteady pressure differences across

* the airi[oIl chord are klnown . Development of an expression for unstead\y

pressure distrihutions i.; needd a1d is reflected In the recent commeL
i

.. t is stL i I 1 1tl , at th prC 'sent t i me, is a gnera I

Sr(it;toitLt thLt hal :-; both C1oIrdwiC ;so ad tralnsveroqe L,'ust

('71 ui t[ , Aild oti[ ptLt.; thc I t:;t:il.dV pre,:troc distributi on

4

{*
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6

from which the lift and moment may subsequently be obtained

by quadratures."

Such pressure distributions are also required for the prediction of

turbomachine radiated noise.

1.3 Obictive of This Study

The objective of the present study is to develop an explicit

solution for pressure fluctuations on the surface of a turbomachinery

blade row operating in a spatially varying disturbance flow field, for

elample, one which is caused b. an upstream stationary blade row or

ini t distortions. This is to be accomlished by considering an invis-

cid, Lncoapress Lble flow through a two-dimensional cascade with motion

reloL ivc to the disturbance flow. A thin airfoil model which neglects

th.e' influence of airfoil thickness is used, but the effects of airfoil

c :bc r and angle of incidence are included.

The results calculated from the corresponding expressions in

References (S) and (.9) for unsteadv lift and moment are compared with

t hojw Ch t a ied from the pre sent study. Compa r isons with other available

cxperimental results ;ire made and dis;cussed.

- -- f-A



CHAPTER II

THEORETICAL ANALYSTS OF UNSTEADY PRESSURE DISTRIBUTIONS
FOR A CASCADE OF AIRFOILS

in order to develop an expression for the unsteady pressure dis-

tribution and, hence, the unsteady response of a cascade to an inflow

disturbance, including unsteady lift and moment, a thin airfoil theory:

is employed. Since a cascide of airfoils is considered, thLe contribu-

tion of the cascade effect or blade-to-blade interaction must he

inciuded along with the effect of camber and an,"e Of injc dk_'-Ce.

As stated in Sect ion L.2, the method of anlalysis and the0 Marhe-

maticai model employed in this study have- beenl USed to pre.d jet thle

nsteadv lift and molle o t (l16, 19) .The contr ibPutions oC tlJIL pr_ soot

tuywill, ho the developmenit of thc express ion for unstead. pressure

distributions and tile subsequent calculations. hlOWOer , the c omple 2teL

anal ysi1s in 01)to iiii og thIis so hition is preseniited for t ile saikeL Of

Compileteness.

2.1 Flow Model aind Method ofArI\'1

As; stjited in Cjr;rptLC orI, thre prOP I em to bt' stud ied is the unsteady

pressure di at r ibtion onl thC P Lidkes of a cascade when the blade row

experiIW! t z ti a]~~l Vt] or', tV arii Lon in Lithe Iof] ow, for examp1I)L, thle

nunnoln for-) flow~ ;v I,, by , %w erks oif ut ream_';l bladec row. 'lte flow

mod eI l 11,1 c i Po d tIi I r W i 11. b) C 011ip 10 yed .i ii tI Ii s .nrLs is- i s a S inpo Ia; r itL

Vo rt1:. 1- > ll t t '.Ill i h been! broad1 1 I-,11 V 111od il i l t t Ii i n a i rf I oI theor



it is necessary that the disturbance flow field be considered

before the problem can be analvzed. The flow field is assumed to be

two-dimensional, inviscid, and incompressible and represents a develop-

ment of a cylindrical surface, as shown in Figure 1. This general dis-

turbance flow field represents the passage of a rotor through the wakes

of an upstream stator blade with a swirling mean flow. These wakes have

a maximum velocity deficit of 2wd and are transported over the rotor by

the velocity W m, the average time-mean velocity between the inlet and

exit of the rotor, relative to the rotor blades with the wake present.

The velocity deficit wd represents the perturbation about the mean

velocity W . The description of the wake deficits shown in Figure 1 canm

be accomplished using Fourier series representation. From this analysis,

the contribution of each harmonic of the velocitv variation and subse-

quently its contribution to the Unsteady response of the blade can be

determined.

The disturbance flow shownl in Figure 2 represents a particular case

in which the rotor inlet absOlute velc iLV is axial and varies

Si nutW;idaLI ly withIi wlvet'nl',,t I in tle direc t ion which the blade row

M0 V":;':. lhi ; I- .I o,! mod k,l r, ')r :;k.nLt:; Llt' ftu dumental harmonic of the

Fouricr rC)recSentI:t ion Of Waikes fron llpstre~in ataLionary blades and cal

tliertlor beI, extc hd to I.I :'110 1%lt di at U il11C 0 FIlow field. The

di :;turballc flow i ; t -, p:;0rt'L Led thr ithi tl' l i 1li it, by t 1ie

ci rtlci-(iitial-eai axtial ve'locit C and is :ixedI with re1s;pect Lo
x

I I b)(ii ttld:ir ij : 1. l b lId, row ,love.; wi t e i:i- iit Lrotat i oillI

vi c ity l. Tli W i iiCMlr01 t ial -macI v, c it les reIat i-ve to tlh bl) idea;

,It the inlttid 'x I ar Llit in i'i. re A jo il and W, with W 1 bei n;

SthI r mcai vIih .I lie t' tTt rV Of t he cel S I deoscr ibed b" the

1.t

• ' X II II I I I I II I I II,. .I - i l - " ",. . .. l i
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parameters commonly used in turbomachine design, the stagger angle ~

spacing or pitch s, chord length c, and maximum camber ym. The charac-

teristics of the disturbance flow are described by the reduced frequency

~j and X which will be discussed in Section 2.?.

By conside ring the velocity relative to the blades, either a stator

or a rotor can be analyzed. However, the presented case will be for a

rotor. The relative notion of the disturbance or velocity variation and

the cascade consequently causes the unsteady response on the blade. In

this analysis, the disturbance is considered as a perturbation around

the time-mean or steady velocity. By virtue of this assumption, the

analysis becomes linear and therefoce makes the solution linearized and

suitable for suuniation.

According to the Sing-ularity Vortex Method in the thin airfoil

theory, each blade in a casocade is rceprCSeiltcd by a vortex sheet, that

is, by a series of vortex:, lines with a, continuous distribution of vor-

Li i cty. Pc~ause' k0: the nonu1Il i ormit v of the' inflow and the effects of

n~jt:~ii o! nh 1des , ec"I'lhjbade leaves- a wakeW comp)osed of continuously

di:;tribiited vo:.:s t;extend in '. froil it.- trail ii edg~e to far down-

st r-.11. -i.~. ,,i ii O 0c11o simpl ified, model which

* l..H j Vil .'-: [ill . ti c it v i\ i' oi t .W ren.t- 'e blalde onl Which the'

I" ,! 11 11 d ilo C 01.i deCred t o be-

.0 V., ..:,i . h-U, <ii.roe t it lo be dja1Ic1L

J.1K Sh- -t
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This flow representation greatly simplifies the subsequent mathematics

adis justified on tebasis of results obtained by Tanabe and

Horlock (nl) who use a similar model for the steady flow case.

To obtain a solution to the problem studied, the following assump-

tions concerning the flow field are made. These are similar to those

often employed in isolated airfoil theory for the unsteady flow problem.

They are:

(1) The flow is two-dimensional, inviscid, and incompressible.

(2) The blades are represented as thin airfoils by placing

bound vortex sheets along their camber lines. The lift

is s;mall so that the boundary condlition can be satisfied

oni the chord line rather than on the camber line of the

airfoilIs.

(3) The perturbation diis tu rbance ye lee it iS uLd and v~

paira]ll and normal to the chord, respectively, are- small

as comipzired With1 meanl velocity N past the airfoils.

(o'rthe c i ci 1 a Li on of Lte whIo 1 flow sys ten reira ins :-ero at

an1V inlStant Of t ime . This is a statement of He lml tz ' s

Vo t tcx Thicorcm wh ichi says that a fl1u id whlich is in it ial.l1y

irrotat Lional will remain i rrot.i'jonal uniless acted upon

;II v an el c ro rot a t i OnaI fOre e

k'1L-o a I i fo i I :; tra vel Is w it I i thIet m eani re at ILyive v' leIoe i t\v

d i r oc t ion)I

(0) AIl I (1111111 i Li cs relprostntL lII', th10 IiM;Ltcd ness- varyV 1S

ihai 15011 tun10t i il 1 of Lit

IFW -. 1
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While these are very strict assumptions when compared to the actual

case, it is possible to use the results of the analysis to establish

trends which demonstrate the variation of the unsteady response with

various geometrical parameters. Thus, the present analysis can be

employed as a design tool.

The mathematical analysis then follows the procedure utilized by

Blisplinghoff et al. (22) for the case of isolated airfoil, but it is

more complicated because of the presence of the additional blades in

the cascade.

2.2 Representative Description of the Disturbance Flow Field

To obtain a solution for unsteady pressure distribution on a cas-

cade, it is necessary that relations between Lhe' disturbance velocities

and inlet flow, the mathematical expressions for flow disturbances and

definitions of the frequency parameters, be established.

From the geometrical considerations in the general disturbance

flow field, Figure 1, the resulting components of the disturbance

velocity wd normal and parallel to the chord can then be expressed as

v = -w coS L.
d d

and

ud = wd sin

"lhc neg, t iw si.gn ;i arises due to the seIcCto2I coordinaLes. In aIddition,

01*

4' = -; 90 ,

j.
-, I I I I i "-' i' I I I I I II II I I I. . .. -



where 18o
0
"-*-,,, hl, tn th, Lex1 tf low in,; c 1M, t h ,-titor row

and bin g L hc Sta,,r n)1 f oo baerw Thuis,

LI _ d Sil

and

Li d = ~d cos(I

II f

LI s i

iLr ;lId C I I kI)1I I t IIlk C11)rd 1 l-iI i ti I t C.;iic t: 11C Ill Il

I, i kI t i s t)o:- ibi a du J t 111 tI 'L " L ti '4) U )1: 1W, t

ovm d I UV s. I i Ull,;r

011 V s~I ~mtIo (6) iii L I I, ;r,- ov Is;; ALL' t U i on c t I t t i5 t

f I Ilk- LIMI L i 1101 (1ULi1lt i L i LQ;; A L ;I- ~ LL 1 C t-i II t i :11 * i c i A

St I I c ; oli p L~~LIL iiL~ I o xi CL 1)1-t'1,11 t :I i on; oI In J 0. i1

VLI c i Lv rI . IL iv, t L) t IIL' MOV i 11. 1( rLor 1) 1 d o is ti ll r i 11. sIt :I

rL;;poctL toL t imo L andl LAO I( wri tt n -iII k" W i' I,:

tilL -I I I Ion. I , J ; W1  In (1. ;IIa I Ic wr i L- t oII ;

Sx +L v ± it
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The variation of disturbance velocity along the chord, the x+ direction

+
(-I -. x < I), can be expressed as

-ipx /W
Vd(X )  v de (4)

whtre j is a complex number, i = a + i5. For example,

(1) if 6 = 0, the disturbance has a constant amplitude over

the airfoil;

(2) if 0 < , the disturbance amplitude decays over the air-

foil;

(3) if i = .', the disturbance is termed convected and is

transported over the airfoils with a velocity I, ; and

( ) i x ., thV disturbjnc'e is tormed nonconvtctd ind is

trinl'po rt eoI ov<,r t lk ii rfoi I with i vclc it. dif-ferent

m

A fro uii'y par.imc'ter % is the'n d.fined as

21"

,l~hl l-,"i l'<' ,+ ; 1 [r,11 io' o i th,' ,",w i J L o t k-I' , i:;t. 111'1)A ll ' V Iv ]c Ili;; 11 1 ll .
t
'

tl k, l wr < ] i . 11(itil t i,)n I ) c'.' ll L ll'l 11 , wr it t< ,I l ' ;

t-+: , ( it - x )()
" ( t ) V.,L

II . I iht :; I '. ,lh .1 11'1 Vh ,li ir 111, 
>  

Ci lV C' tv "d illdl Ihl.;

<1 ,I l :; .l [ilt l '17: 1 L.tlid ,' V' in t ,

I'I

tl , it i II i - I I III II] II I -
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+

vj~xt v em

V

whre.j= e M2 is t he reduceLd freqtuency. Mo0st stud i s of linste;id"v

losCOnlsider thei disturbance to be of this torni. 1n this analysis,

h1',Oever, the gcncraI expression for aI nonconvected disturbance of con-

st-Inlt 370 Ii tude will 1c he considcred , tna It is,

7

I so ox.' ro r.% i cc po?. I I1s1i 11

+ t(

I:(;L1,' L iolo 11 tii (, r I~ L7k dv 1) in t ti Ir Ieh C o

d i; Ir!,.ill 1%' Vu I. oo I.I,- U rot or 1) 1ie

i i 1 i l I, v .

!I 'j~ oI Li S,
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where Z is the stator spacing or wavelen';th in the direction in which

the rotor bLides move. Thus, the generalized reduced frequency

becomes

2 l c

I t S~(9)
ICos

where 'IN is the velocity at w.h ich disturbance is t ransoorted ever the

2 W -1

tt

mm 1

I - -7 '- litC

r' qlt I (vj, w er i reI t e to, C IC 1v 01-a i 1 (18) , 1

Iu 1d i1 1 1 Alla \I re I~n i ta n II cI r-" ocIr n a I caca e"n i h

iI" 1

wher W i t velocity .whi dist urbanIce tis (f transt2te over~ the i

I 1 Cv*.d. . Th r du ed fr qu nc ,it t21' At is w Ihen W = ot W ithe iIii' i

L I

ACC!117111 c 1t1 tA d I I t

44

A,,nE~.t o ) h r + is r l td t !b q a in ( )
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significant. In a vibrating blade, r expresses the relative motion of

adjacent blades in the cascade. The negative sign appears as a result

of the coordinate system chosen in Figure 3.

The relationship between the intra-blade and the reduced frequency

for a nonvibrating cascade can be found by substituting Equations (8)

and (10) into Equation (1i). Thus,

2j cos s (12)
sin c

or, when S = 0. that is, I 100 - , the relation in Equation (12)

beC om s

2 s
- t-.(13)

sin L c

I' t1; i -. ) 1 - ie k proportional to the reduce fre-

qtlIk'V, provided that the cascade is rigid and nonvibraLing.

'. 3 eIJ MiCs of theC Flow Filcd

Sinel the present analysis employs an approach similar to that in

the, thin arifoil tlmorv, where the flow .eiteation i!; lkeerallv simulated

':in .i plpep r ito. di;tri it ioI of Vort icit\', * Il .ij i t\d or'sslro dtis-

.ri ,li ioo , i'o i; 'ail he, de'01noilied ol (11 l1V tlie vorticitv di-;tri-

belti or cirela ion is stab 1 iirli t. Ii i.I i ATcc Amp , I i o'; d b , f i rt

a For:ie II i 0ee 01 the i I il'd Vl l 0 itC iL S eM I lie rct l- rti1CO 1) la1 e IISi11..

tLi l, .v: , t iot ;ii! Lv.irnt (.'3) for till' .,PiC,, 'e it -v c i thle t iel-

; lic l m it ,1 1 $f ;Il ,l i Li l- e ti ul.rI _ I ) to obtaill the :xp )I-i ,

4 ven icit. d1i:;ttribui ioll or ei t'ct iii ljul t ri-.; of iliiC'l V,'le'itV .

Li[ 1 tIt' 11:;,0 ,I ti, l v .;' ul: c'qt.lt i01I of 1- ~ oki~ ll 'II t!),! ::10;1IIII U::i

p -~
-- -W
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equation together with the vorticity distribution, the unsteady pressure

difference along a blade chord can be written as a function of the

induced velocity.

When the induced velocitv obtainod from satisfying the boundary

condition for the reference blade, which in this analysis is a nonvibra-

ting or ric.,id airfoil with camber and angle of incidence, is inserted

into the expression, a closed-form solution for unsteady pressure dis-

tribution can finally be derived as a function of the disturbance char-

actcristics and tie eor:et rical parameters considered in a cascade.

2 3. , Formu:tion oft Induced Vt ocitics

F ro the Li w of Bio t and Savart and tho cascade confi duration as

speci .... n ir +, lte induced Ve I oc it \ d at a point x on the

t h
rl rc: C bLd,du: to In 2lcmilt il circulat ion (y dx o 0n the n

11

i ! A " W It I ,' at~' L l t , Call expre ,SC as

I 1 11 : 1 t)dx

t ) = ,. •

Ins co' ,) + (x - x + ns Sill

;,.,I i hlto til e r:'l and chordw isO induced vol oc it ies

C. t o t li, choson coord ilntc:

Syn(x ,tlno ces ,, dx
1;II ci

" i' '_T (ii:; c' : ".)' 4 tx - : -n- s si[n ,)
S p

, 1 (:11 - :: I- n o; :il .) :.

t) "(,: ' :; ")f 4. (,: - x +- 15s ;ii ")-

- p

-- il ... .. . .. .. i [| .. . . - -- i . -.l.l " .[.. .
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From Fi-urc 4, it can be :issiimed that the vorticitv at a fixed dis-

tance-- from the2 lead log edge, Of each bladeo in the cascade is of the same

ampi itude but with a constant phase difference r from blade to blade.

Also, utLiZing the assumption that unstoady quant it ies vary harmoni-

cally with time,

in~ - i (vt + ~
1 (1x 0t y 0(x, t) 0 Yo Wxe

- ivt
du Li du x)c

and

d-, (x d d v (x )e ,v (t

wheLre u (2;s Thu-,,

~ i'~(x)e 0, 11 ces; dx

(11; o- + (x -x + no" sinll

i ti ( x + it:; :-il ")(

t I

I~ S -j :; I~ i :l t In- VI- Ic l L 11 1 p ill '', -'Ld( Zi[ a jl I o n-, 0t lie k Ot

Ii' it I ) t- L t iC Ib iii ;i 1 I I t Io Lv Iindic d at x~* B oe tI
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can be done, however, it is necessary to relate the wake vorticity to

the circulatition on the blade.

Consider an element of wake vorticity of the reference blade of

strength (x,t) y (x)e which, from assumptions (5) and (6), is
0 0
w w

harmonic with time and is transported away from the blade with velocity

W in a direction parallel to the chord. Then, for any location x > c
,:.I

downstream of tie trailing edge,

t -
iv (-;t--)

" (x,t) = i e(16)
0 0 e

W W

Duir i. n an: int.erval of tim, t t, the total circulation on the blade

cha iin:e s its strcnt h by

d 
Ltt "t d-L ( ;o e ) ,t L ',: e

wh er C

c

" (t) Y¥(x,t)dx

o

Ti cl. iln e iin t ot :Ia i rcti I t i IIi i-oi I t S i ill e l cn n t ol wakle ci rCI 1 a-

t i lW i h 1l i ; ied io t -i : c e and nov downo t r'im ,i d i :; ance W > t in

t i: t. Th wake I- C il, I t i0n 1 i o) 1 .; i c i ;n to the* cl ''e in C r-

c lit ioln on l ,e bl.C e L V t1W l h lichiiio; t.: 'f Volrtex I'llorOm I S :t Itd iI

i:;iti;:pL ion ( ) . 'lurI o e

44
4

____
* - ,
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Thus, the amplitude constant Yo in Equation (16) is found and leads to
w

an expression for the strength of the wake vorticitv:

iv(c - x)/W

y(x,tI = - F e (17)0 0
w

From the statement of the model. employed, the vorticitv en the

1 hblade is concentrated at a chordiwise point x ci, while the vorticitv

in its wake is continuously distributed as shown in Figure -'. The cir-

calation on the n thblade is related to that on the reference blade by,

n 0 1. ram Equation (l4) .At this oIntII, the coordinaite axes are

t ra nso rmcd to midc herd of t 1n2 reference blade b%- x (Fm,' c) - I,

whelre x ,theO aimenj'1s ionIIS les crdimate for the ret erence blade, varies

fro -I!T t o I.

Stilbet, i tLitt ing t liene re Iat iotua into Equition (15) and in tegra ting

from the lcead in- edge,, to inlf in i L fa r downotreamtl gives the total

th +
V( lee i L i nlar.lc" by the. 1 ) blade al. the paoint x as

u + I'- + + +~\ ,(la

-- ) 4-- +
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+ +

0 p +1 )d +

Where

[0 "

A circulation coe'ff icient ( -- ei
c

o = reduced frequency (= )
)w

c + C ) + functions relating the location of the blade

C c +

vorticity and the point x
p

and

+ = (Lumny variable along wake

The total velocity induced at the point x by all of the bladesP

can be found by taking :;uTnmmL ion of Equation (18) from n .. and

n .. It is iat:med that the vort ic itV on the reference blade is con-

tiiuoua;lv diatriI)LIted rILher t lla a coeClh1t raIted vortex of strendth F
0

Th,; b% %O+11x+ :11ltiO S 1c o e
- +['u;,b\' writinO .; 1 ,0 x l.(lttion (18) becomeo:

;-I -

Kj I k- li I

I and

4 !.

- - 4-. . . . 2E I .

I ,' ._L , .. ., ... . _ ,,
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(+) = r__ (x+I)dx+1  W e +

0 27T + fir + +-= Xl _x) r (X+ -x + )
-1

4 iis (X+c

411c 1  •+ + +

2.3.2 Unsteadv Vorticitv Distribution and Circulation
To determine the vorticity distribution (x+ and the total

y (x) ad te ttalcircu-

lation ? , the S6hngen inverse formula is employed, which states that,
0

if

i

then

-1l

wh Fr* f( ) i:; thI ' Jo,.; ir,,l t;okto' n' Fu- t io . Ibis l eads to thI;' fl l ow in;;

x':<rtos;sion +I" r (x 4- )
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0 TI 1+ x~ + J1 x+ (x + x +)

-1d

i, _ 1+ +x+_ +_x+ 1 1

+ +

2x e -dx

+ 0 +2 1+ 1+ 1 ( + +x
J, +- + +i +

1+x +(x -x)

+) -1 1

+ +

o)I v the normal ilIdUCII VLIi o( it L v %(x + scnmi e ill thiS ~xr'sa

tor 0 (X )b~aii L110 in lvt c Mt t 'iIedwo f Cd iloc iL\

LI +I) is Of al Ili 'jl O(TIX I lkli tj,-r;ur li"'li'Ld (]is)

113V ~ l~il ill", 1 I rl' l i t rl 01 il j ~oll N ) allk

+- ± + - +
III~~~~~~~~~~ L *JI ~: w IirIio n x X I,(~)bir~e

-+ +

4- 4- A -4+ 4
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F+ ++

c iJ- X x

+
+ ~dx 1  + _ 1 x

h +)I (,+ - x7+i) 17i 1 + x

in~ I +X+

++

dx ~ ±(20)

Whe rc t to ic n 1 1 C I x ic a rid hl i-C;~l70S4o t th, '10 p.;i ill0 of th, C GilCL21-

t ra t d v'0r L iCr otL 0 h 1 CId jl&i lt 11;anld 11)db h. dCSL-rib the, p)ox1-

t m o Lhi r Slid vOrt iCitv.

'FhO prodLICtLs Of tlho fatrm ((r x + (.x + x+1 I wh ich Occur ill

Equa L ion (20) ,Cil bhe writ ttcii as

+± + + (r )

(r - 1 (x - :) (( X+- (r-

Sik; Ilt oil o C th i ; r-o Llt i on i 1tLo Fqoju, I n ) i ll -0 -1 1os Lhe i 11t ~ra 1>

wj i L FI-( t t Lk tO li' OV.u I Inu.1t 011 Lfix i W', i )t Lo ,ra I re Iuit i ow; I iSL C'd ill

.\ij'ciu i :: 1, . HLo.'VC I- thC Ceojuplox- pat i t io , OS , l ad 1i Wh1i Ch

11 tv I lor:



S+ - = 1 - I ---- e ± ---- Sill .)eS

It= - I + in -Sil+l-~ + n' COS.,

.:nere p) rcpr,- t x or , I MU!L he L:aI ~ o a-uethat they

fulf ill1the rnmathema~ticeal restriction that 12 and 11 2 1 that is

p

I' jih' 1 l It .. r ,-r I hai tini t a i II t1*i ,

1-or p) x 2 2' li'l S , coni 1'r l, 'Indi 11 Equlc ionl (-'I)

- 2n *l sinl +41 + )
4 c C
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where M > is t he e'Iscadc f in.' t ion:

I - n(C-1 n +D+ (*-2) -i.'+e LlT

'ih( tr~o pi irt or t iinc atve rmi , of he vort i itv d is trihut ion and

circulationl whjich will bo iico(duk to soIl the problem can be found by

mtn2us-e af the 1 ine,ir ;nr, imrt its of the jnlss Thus, by 1ettin-

++

+ u-m +

++

+ (2'

'I~~ 11'c i : ' .. I td h oit I I I r t t I tvo ;'o':

IL I-

t t: tci t' ,.cI > ~l.

1 1 V !I t
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4 v ()dx

/ , +1 Ci +1

.3.3 Unstondv t'rc,.ssurQ Di.stribittion

Fro-m the assumption (2) made inl Section 2.1 and the Euler's mome'n-

ton doltionwhich link", the kil eaLic tlo%.; wit il dlnliioenA os h

boo n] ltion b~etwocn Llhe 1-10W Ve1OC i tV anld prss -Otr tilrit;i'I

+ L i _

S e thc thin nirloLil L ItIhe)r V i S to 111 1o1) VC inl thek ;111li VS is 111, 1;'-'1

L~ un. id%, rL'spohise COfII I'le i I-1 ois toL tlIt, fowd I %V01!i t io 0 s 11 StCateLe is

of it L~~i C1oterol 5 t le ex1presolon for iunt adiv prLture aln he iir-

fo i i i iven in ;I form of- pressure U iflQenuce. The pl-Lssurne dlifferenco

t i,'1 iOf (o tio di ii rrlt' In Io i , tn 11 ;i lr t 0.1 i e SI y

I'l 1 1 1 m noi I ni ) I Ii n Il i I, Cc re c cm n Lh1 ,d r:, icp c ieI J

(-4

I a i nt4-I n I ~ nil oU FK en (ii ti H ho dv mumi ~



whore t lie veiec ity (I is; tht S1111 of all tI I v1,2 leco:i tie in t he X ire(C-

tion, that is , the instantaneouis chordwise ve loci ty. Thercefnre

0

L ( ) + ti

L 0
Lt

as desc r ibetoi1)Sect ion 2.2, I (xt 1:J 1 t 1'' to()1- viciV dliStribu-to

0+

t

t in o I : o.L
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where onlIy thle uns teady cont r i b u t i on to p re , nilrC d if fo Crtnc . is con[I-

side red .Aoain, us i n t he ;ssnrnpLi onl CWI:t 11 1 the LinIs toad% quiant itijes

are harmonic with[ t imc

- + -

and

( +.+ id ± v it

the1 uns t eadyV d lo i r i 111 01f (11"FCtssInrc d iI f L2 c-n c c can be writtro in terms-

of it s amip Iit 1122.Ti;

+ ±+ dxf +

Tb' i n t ' c;i I i n [q IT.I ion ( 20 c;1 an L, d c t t, i io b1" y ilt oc,;I-.i t i n o
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Subtracting the product of Fquation (22) and the quantity 1/2 + 1/7

~-i +
sin 1j from this expression leads to

+

+ + + 'j'4~(++(

j L(x+)dx+  
-- , V(x 1) +fJ L

x 1
+ ,P1  L al)

-I -i 1i

+i 11- pp 1 in:I (A g ) + 

i J. vt in: -i +.. +

K' l

1

Su it i Un >i.;q.t i on:; (2 ) mld (28) into Equmat ion .f7) rot-u Its in a

+
',:rI I-; oY'?;;m-,.<ac !,I; I mnlll;[ t'idV j)tUUH11t rot dii bronl-lco2 ,Pp[ atL a posit ionl 0
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Te t i I"-;t t.'a tetrloI! .d t lie thIi rd t rmr in 1:Ila L i on (29) rp e n t

Lhe U11,1;teII V ')1r I str, c oI I ti IMited t raml l ch h~oii v r t jetlV oaI thle refeUr -

e 1n'e I) 1id 10 I A i to shed vo rt ci kLvt re;Oet tC L [veLv. Tihe Lis t term

La I, lie c~ th n tr i buit i on from the1 inIteoraIt in b- oten t he
a M

c o ier 1w i.-e d i, t It rbanC 111 L nite hondn var t i c i t v on t hot reI erenc t. hi d C

mOt herI t errms isiv i ii-, i a t i a itLo simmat i omns i nc [audoe o 'f feeCt f rom thle C 0n-

cen 11t ate Vorices of t ito 'I 'elnt 1) L.ideS and thal~t Ifrom t ho ir wake var-

L i c t v.

E,1 1.1 L in (2)) k'ali 11 1 ii1 Iv b" so I ved kheln thle indui tc ed ye Iee it

v ,kaowar(171 L h,' .cIle Iend-V e i 011 L n,- iertecd

'r~viL;1t I ti 1 111V P. Ci. ji O I V . * I- Oi li I'tll

;,,(I thel , t otj I 1, -1 i u 1 i d d I § Io Ittv' v V ( x ) n mast he

1~ .m Ii.: rc It c r- ch't i~ ,i k, bi rIe c ld . 1c T s

i a''i 1 ,ihI Lu' 'iiuda iiv co i it te en oi the I ret 1rue bld -lCL ) s

'ii; lt i 'n

:'. u':i i -. - co , i i; Iht ii oh. mm' cl, 1) 1i; .' 1- i L mi'c t he.' rLw' L 1 Ln to
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angi el oft inc id~ine eas ii ust rated in Figure 7 . The ki nelMatIC f lw.- Conl-

+ W sill + v + v
dv M Il dl -

d+ Wm COS ( + I + u

IFhe inc L d 0n1CeL a ngl 1, is aIssumed small, the equaIZtion can be

written as

+ d v+
v (x ( + u W ~vd (30)

0 d Mm d

whore l. is negliected as discussed in SecLt iL)n 2.3. For the specific

caise where flat ptate2 and zero angle of incidence is considered,

1.iIZIqution (30) reduIces to V0 (x -V -v

Thc linear nature of the present ilaaiwsis enablies the boundary Con-

Ii tioti to be separated into two parts: a steady boundary condition and

on uno1<adv ound ary conad ition. The normial inducedA ye 0C ity V is then
- - 0

comIposed of a steady part v and an unsteady part v ,that is,
0 0

v MV + v .Thus, the s-teady boundary cond i t i on hecomes ,from
0 k) 0

+ d +

d ± 111 07

+ t
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Ln this ann [sLis, a parabo lic airc camber ine rtpreseninin t lie air-

fo i I.s cons i(,, red and C a1 be desc r i bed a

+- + +
y y (1 - ) , (33)

where, v is the ratio Of In>xi-mii camber to the chord. For the general

diLurhance velocitv. Equsit ions (31) and (32) can comb ine with

Equations (33) and (5) and (7) in Section 2.2 to obtain the following

relal ilna:

()= -(2 - ), (3al)

and

+
+ i- vt .+4- iKt-x) (Vi,)

vv (:- ,t ) v, (:: +) (-v x Id  + v ,

1 l II

I'V(JtAl in II ( iV-;; n 111 exp r;aion I r eUla, ad i: ent' d iua iio

tian ,al i i - ; o a ei:;cf jc which jilter-aCt:; \,'ii ,1 J i l;t lcellec it t h,'

i l c L I I aw i,' 3;. Tw i ; ; I d !I ,, it t en i11 terms; 1- -. i1u ,

0 ICe it LV v v il t:11 - i ;kl c I,- ot m1,1 in di r t I cl-,t, d I i t e 1
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i t , t i , : L u t Ui., f, 0- ,'I C:: III
t~ I I dtOLy- ix(i; lat al.o alli ~ ' s' AII , a1,i ., I t Is, ,a,:;,Ia l, I -s a ;a t man ,a,1[1 ia

hd~t.i lted. d.iti t ,n e mls:;t i',~ cian a:I ilt ',, vi-',it v de , Vri',d I rai t he
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eras ~ ~ ~ ~ ~ ~ ~ ~ ~ I sh s' -;i+ , 1- ,Z :),nd A( )all coual

:.Lero when I.

iTie COt r-Oe ness of th is- cxo rus.i on can I 1SO be e bUCke-d 1)V ex-.amining

t hc i so ia t d I i rto L I ca"se , A[ppendi X A , in1 1.h1 i 1 t he' bil ado-0-) il ode SDaC-

inoo in caiscaide become1s i ut inI- tV . For th is- cond it ion , thle ex")rcss ioil o t

tin tLOidI pres,'sure distribution, Equa tion (39) , redulces to one which is

ide nt i CZ1It to tha t ob t1 abe1d by N>iaumn (2b) s incec the terms c on ta in in-

infinite summations in Equations (29) ,(23) ,and (24) must vanish as

Shown in Appe~nd i:-: C.



CALCULATI ON OF UNSTEADY PRLSSURE 1)1. DSTR IBUT TON
AND OTHER UNSTEADY PAI,101ETEPS

Theo thooret ion I analviSi- inl the preyvious chapteor prayvides a solu-

tiOnl of unSLLadv. pressure d istributiion for a Caiscade of airfoils in an

inviscid, incompressible, distortedj inlow101. Specificallv, this solution

iS i lr,4Il il i paramcoers, - the ca scandl e eomo t rv:

inl' tJI' ' 'ill t hl! rOdUCCd fr nc . or' 01C 1
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CHAPTE I R IV

Tiil.KoRETILAL I'RKI)ICT' (NS AND) (TmIIAR ISoNS WIWIH
EXPERLW I LNAL RES ULTS AND 1)1)II R SOILUTIO(NS"

To demonstrate the valid i v oft the present so but ion, comnparl sofl

WILl be m.1ade Wi thl o the r sobut ions; and with ava i lab le measu red dat a

donocr i )i - t hlcm' Ctitidv p C2'S-tl 170 d j~ oron0 d i ,t r i (itt i on or unoiiutdlv
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reduced frequency (D becomies close to a value of w 1 .642. Near this

value of ,a, the present analysis and Henderson's theory indicate sig-

nific ant changoes in both the magnitude and phase angle of the unsteady

lift COe-fficienltS, and ai great discrepancy is observed between the pres-

anialvsis and the VWhitehead-Smith theory in the trend of the predicted

variations ot P,

These critical values of we occur when the cascade inflow conditions

become such that the spacing between blades s is equal to the wavelength

of the distorted inflow or anl integecr multiple of this wavelength,

thait is, the value of intra-blade frequency -[ defined by Equation (11)

approaches a multiple of 21l. Henderson (i8 has classified these criti-

cail values of j) as "resonance" points and suggested a physical

in ta-rpretat ionl balsed onl the pas-nIcd if ference f rom blade to b lade

a"; fob 'ows. A basic assntip Lion is that thle vo rtic it y and, as a reSU IL,

t lie c i rcU a t len onl the nit blade di ffe rs f remTl that On the reference

b)1 ade by a lis anIS ge1n. ttlin the "resonance" cond it ion occurs , the

vo rtLic1. LV and ci rc ulat ion onl al1. blades anld Lhle ir wakes are iin-plia se and

the ir con tr ihu Lions to thle uint ady response of the re fe rence hblade tend

Lt aecumuI aI andk2 II , Iheiice , rotan I t ill F i guIli f i c ant Chns in unlste-ady

c c dcperio rmanic e. Tue1 a pee if iC v II ies of 10 Whiark t lie resoiaIte eCs

acni,;il be deteLrmined from Iiqtnat jot (13) by issuminii;; 2k;;, k 1

3. .. ..... r Lili C tU;C:iIC !;0li0LrW of A)'In id s/c- 1.353, the

irr Fijl' I'-' thI , (I rdNe rejtho Llics a(I o os,

p!1) 1 ;"'rIi~t tl Iu oxI t. enee of those ro:;()a nc, coiid it i ons. 10onderson

* ~.h11t i iIKtiIi tx:au i on, for thIo ;;t:;tio i nd i huc'ed yeI tis
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due to all the blades in the cascade. While the W1itehead-Smith analy-

sis computes unsteady response at the resonance points corresponding to

= -2k7i, it does not provide a correct mathematical solution.

The values !CL , L and pM predicted by the present analysis

as shown in Figures 12 through 26 are, in general, in good agreement

with those calculated by Bruce. Near the "resonance" points, these

quantities representing results of both methods undergo significant

changes in their levels, but the present analysis predicts a wider range

of influence of "resonance" and a greater level of variations. Another

difference between these two methods is that in the region of lower val-

ues of ., that is, w < 0.5, the cascade performance predicted by the

present analysis tends to behave as that given by the W..hitehead-Smith

theory.

Thieoretically, for an error-free solution, the results predicted

using either the present analysis or Henderson and Bruce's Lheory should

be identical. There is a good reason to believe that these differences

can be contributed to computational errors introduced during; nmericaL

inte:,rations of the finite summations and are the result of taking only

a finite number of terms. However, the similiarity L between the solutions

gzive by the present analysis and Whitehead-Smith my not be coinciden-

tal and should be examined.

The present analysis predicts the resonance, for example, by jCLi

and C with semewbat of a "laggin", effect a s compored to Bruce's

caiUInation. 'hi fact is a]I;o demonstraltd bv the parameter x C.. An

shown in Fi:-;urs 24, 25, and 26 whore Lhe present analysis gives a

soutji, ;i:il.lr to that of Whiebtahjd-Smih:Lb, althon'h it decreases in

- I
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value near resonance points. The abrupt changes in the location of

unsteady center-of-pressure obtained by Bruce are not observed.

On the whole, these predictions of unsteady response parameters by

the present analysis are in good agreement with predictions based on the

expressions of unsteady lift and pitching moment derived by Henderson

and Bruce and are similar to the solutions by the Whitehead-Smith theory

except in the neighborhood of critical reduced frequencies.

or the comparison of measured and predicted data, conclusions

similair to those obtained by Bruce can be drawn. One of these is that

the theories, in general, tend to overpredict the magnitude of unsteady

response, that is, CLI and icH . This characteristic is attributed to

the flow viscosity and blade thickness effects. Another conclusion is

that the Whitehead-Smith model predicts a better overall unsteady cas-

cade performance, especially the trends of variation of 1C with w very

small, even though it does not follow the chianges in the level of 1CLi

shown by the data in the neighborhood of critical reduced frequencies.

The most significant agreement in measured and predicted data for and

is observed in Figures 15 through 17 and 21 through 23 where these

phase angles obtained using the present analysis show quite accurate

predictions. The measured daLI for C. p /c also follows well the pre-p.

dictions by the present analysis as shown in Fiures 24, 25, and 26.

As opposed to the Whi telIead-Smith model which provides performance

+
prediction based on t = v = , the t heoret ic.aiL model empl1 oyed in this

analysis can include the. effects o 0 mean incidence angle and caimber.

Bruce obtained measured data for various VILues of a but no experi-

+
metal information as to tlhe effect of y . By cor

and predl ctCd [ata,. Ire showed that the trends of variation of unste.ady

7 _ _ _ _ _ _ _ _ _ _

• ... .. .. . . . .v -: -. . ... ... ... .'
. . .i ,
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response varying with different values of a are in agreement. Them

effects of blade camber were not evaluated because of the lack of

experimental data. The effects of mean incidence angle and blade camber

predicted by the present analysis will be presented in the next section.

In a recent publication by Gallus et al. (20), the results of meas-

urements of the fluctuating force in an axial flow compressor are pre-

sented. A series of dynamic transducers are mounted along the midspan

of a stator blade located downstream of a rotor as shown in Figure 27.

This is a case in which the stator blade row interacts with moving rotor

wakes. Therefore, the theoretical analysis developed in this study can

be applied to this flow situation by virtue of relation motion.

The shape of wakes originating from the trailing edge of the rotor

blades is measured Ly the use of a rotating three-hole probe continu-

ouslv shifted along one spacing behind the rotor as is also shown in

Figure 27. It is assumed the velocity distribution in the wake can be

described by two parameters 1i and b/s using the empirical equation

I'l S ) 

S-- 1 - h exp (-16(y')j (46)
max

This relationship is shown in Figure 28.

The pred icted unsteady pressure coefficient obtained from the

present analysis is expressed in terms of pressure difference. A direct

compari~on of Lirhc p redictions with th, measured data of Reference (20)

is not pracLical however, bec;us, of tli stai,,icred Che rdw ise location

Of the trin:;ducer!; on oppoSite :;idea:; of the sLtor blade. However,

Callus et a I . ar, tIb le to obr:i in thei unsteady lift by integrating the

I:
!4
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measured pressure dist r ibut ion, Figure 40 in Reference (20) . The pres-

ent analysis can also determine the unsteady Lift for comparison.

At a speed of 6,500 rpm for the rotor and a flow coefficient

= 0.8 or 0.7, the probe measurement yields the wake shape for which

b/sR = U.3 and 0.4 and Wm. /Wmax = 0.9 and 0.85, respectively. The flow

conditions and cascade geometry tested are listed in Table 2. The flow

is incompressible since the Mach number is less than 0.3. The wake pro-

file can then be obtained using Equation (46) and decomposed into har-

monic ,-,mpontnLs bv the aid of Fourier analysis. Since a cosine series

is cmpiovcd to describe the symmetrical velocity profile for the

co,)rdiaate, SVteM shown in Figure 28, the phase angle of each harmonic

compone2nt is zero. Thus, for = 0.8,

+ Co+ cos ;k

i.!x max

k= t

-( h, b)) V ,,h (1 . - ) 2 k'_')
- ( - C)S- -- ) cos ( ))

k =

0.9870 - 0.0212') co-, (2:: Y) - 0.01094 cos (4; 1 )
S s

- 0.003W)0 c0:o (0in ') - 0.00070 cos (8i Y)s s

- 0.000) cos (101 ) . .

A:; in ipproxim.it ion, onlv tio fir:;t f iv. harmonics are employed to

ldcs cribe th, w.ik, prot iic. The uliI,,dv rt' :ponse caused by oachfli r:-i o ii i " imp( 11.l t i:; [ lic'il i I. c i11 i t 'd I ild Stll:led Lo t i ld the ti fL
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Table 2

EXPERIMENTAL CONDITIONS OF CALLUS ET AL. (A0)

Cascade Geometry

STATOR

s 0.9062 (s =58.9 mm, c =65 mm)
c

= 18.06'

= 0.13
c/

Opcrating Conditions

CASE I CASE II

C

p ~-=0.8 ) = 0.7

=33.0 = 35.0 0

a=-3.4- 0 = 1.30

= 3.219 = 3.31))

F~~ ~~1 -WAN_____________
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fluctuation on the stator during one wavelength of the disturbance. The

results of these calculations are listed in Table 3 and shown in

Figures 29 and 30. Good agreement is observed between the predicted and

measured results. This result represents a typical application of the

present analysis and, therefore, an indirect verification of this theo-

retical model.

Satyanaraya na (30) has studied the fluctuating lift on cascades at

low reduced frequency to verify the validity of thin airfoil theory for

cascades. His experimient is conducted in a specially designed gust tun-

nel which can generate flow disturbance by flexible metal sheets located

on the upper and lower surfaces of the test section.

For this special flow situationl in thle cascade wind tunnel employed

by Saityanarayania, thle intra-hiade frequency t is related to the reduced

frequency jas i= 2 (s/c). :ini :_ At the reduced frequency =0.10

and 0.22, thact is, a case .ler h flew distul-bance is nonconvec-

ted, the comparison btweenci hiS measuired ampIliude, of unsteady lift and

theL value2s predicte'd by the presenft analy'SiS is Shown in Figure 31. In

cont rast to the exlper ii~en t by Gallus et al. in which high reduced

frcquenc iecs are conlsidered , thi s representils data of unsteady li ft in the

region of low redutrc d fre-quenicy, anid good agreemient is observed.

4.3 Thn rvt i il r'lOd let ions ot tie Fe t of Mean [InCiden1ce! Angle anld
01a e > ihr'r nthe Pn te'd e: spen w

LAnl impo)(rt. ant ea te~re o1 Lit- preset an ly i i s that thle effects; Of

meanM i tO'id ncc ingle x land hlid ole riher y+ niCon hc pordijet d . Whi Lo

Ithe falctor;i and V +sir, second-order coirriit lors to tinsteady~I -

response as oppois(d to pi-cor aJew/c0 and stge nl ,thle
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Table 3

PREDICTED UNSTE.DY LIFT COEFFICIENTS FOR EACH HARIONIC
COMPONENT FOR THE EXPERIMENTAL CONDITIONS OF TABLE 2

kth Harmonic w IC St

CASE I 1 3.219 0.2624 308.79 °

p =0.8

2 6.438 0.1965 127.720

3 9.657 0.1556 307.210

4 12.876 0.1255 128.240

5 16.095 0.0950 330.500

i0

CASE II 1 3.392 0.2244 312.490
ip = 0.7

2 6.784 0.13S6 142.930

3 10.176 0.1055 346.770

4 13.568 0.0963 187.590

5 16.960 0.0842 278.600

9
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EXPERIMENT (20)
PRESENT ANALYSIS
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-0.04
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t
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Figuru 29. Comparison of 'redictd Lift Fluctuation with Measured
Dart for Flow Coefficient = 0.8 by Gallus et al.
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-EXPER I MENT (20)
PRESENT ANALYSIS
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capability to pre dict their ef f-cts can be of ,;reat use, to turbomachine

designers when estimating the cascade unsteady performaince.

The results obtained using the present theory have been presented

byBrce(1) l the form of Cd /K + 'a
b) BrI L~ 1.1m' j L M ' IV m

'j -v+ .These are useful parameters with which the final coeffi-
M

cients of unsteady lift or pitching moment can he computed using the

follow.-ing relations:

C+ I+ L

LC, L=IC m + M

woierc C1  I and IC r peent the basic values of the lift and

pitching ( momen.-t Coefficijent computed for the case of zero mean incidence

angle and zero Iblade e:imhe r

Value's of these-;t do riva tivo call he oh to ilned by V i n

Equa LionlS (39), (37), and (38) which permiL the expr,-s-;ins of

-4-
.C 1v; and[ lC to he civcin ais lo

p l p

Aq
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CHAPTER V

CONCLUSIONS AND RECOMIENDATIONS FOR FURTHER RESEARCH

Based on the results obtained in this study regarding the theoreti-

cal prediction of the unsteady pressure distribution on a cascade of

airfoils, it is concluded that:

(1) The numerical integration of unsteady pressure difference,

Equation (39), permits other unsteady response parameters

to be calculated. When compared with Bruce's (19) calcu--

lation of unsteady lift and moment, the unsteady pressure

analysis shows satisfactory agreement except in the

regions near the resonance points, Figures 12 through 23.

This difference is believed tn be a result of the accumu-

lation of computational errors in evaluating the infinite

cascade summations and the numerical integrations.

(2) The unsteady pressure difference coefficients AC
p

calculated using Equation (39) are compared with the

predictions by the Whitehead-Smith theory (14) since

"* suitable experimental data are not available.

* Comparisons of AC and Ip predicted by the two methods
P p p

show good agreement Cxceopt in the neighhorhood of

criti cal reduced frequenci'es or resonance points as

presented in Figures 8 through 11. This difference in

the predictions by these two theoretical models is also

reflected in the comparison of their predicted unsteady

• J J : . ... .. . . .I
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lift and pitching moment, Figures 12 through 23. The

Whitehead-Smith theory is formulated in a manner which

excludes the critical reduced frequencies. Therefore,

agreement between the two methods is not expected at these

conditions.

(3) The present analysis provides an unsteady cascade perform-

ance prediction similar to the prediction given by the

Whitehead-Smith theory, Figures 12 through 26, particu-

larly at low values of reduced frequency, that is,

< 0.5. This result, however, does not agree well with

Bruce's calculations of unsteady lift and moment. Again,

these differences appvar to be caused by numerical errors

which result in the two different computational approaches.

(4) The measured data obtained and presented by Bruce (19),

in general, have trends that are in good agreement with

the predictions by the present analysis as shown in

Figures 12 through 26.

(5) Callus et al. (20) have conducted measurements of the

pressure fluctuations in an axial flow compressor by

utilizing a series of dynamic pressure transducers mounted

on the midspan surface of a stator blade which experiences

rotor wakes. Satyanarayana (30] has also measured the

fluctuating lift on a cascade mounted in a specially

designed gust tunnel. These two experimental studies con-

sider relatively high and low reduced frequencies,

respctively. Good agreement is observed in both cases

when the MacAsurCd In teadV lift is compared with

• - - - , ,l ,v-*ui*-



theoretical predict ions by the present analysis as shown

in Figures 29, 30, and 31.

Recommendations for the direction of additional experimental and

theoretical efforts are as follows:

(1) At the present state of knowledge, it is essential to con-

duct direct measurements of unsteady pressure differences

in an experimental setup similar to that employed in

Reference (19) with a rotating blade row and simple sinu-

soidal spatial distortions. This experimental study should

be conducted at iHtermediat e valies of reduced frequencies

as the hi igh and low values have been considered in

Re2ferences (di nd r3 , , respcctively. Such data are

required to complete the verif ication of the validity of

the present onaysi -;.

(2) Once this analyi, is verificd hy :'easarod bv data it should

be used to generate uns tadv dc sign data, wh i ci demon-

strate the effect; of c1ascade geomeat rand flow

chrncteri.stics, in a form similar to the results present

in Reference (29)

(3) Thu present analVsis shotIld be u:;ed to predict tih,

tunstegidy forces in a cascade of nonrigid airfoils

subj0cted to a forcd vibit ion bv inltroducing the

appropriate boundary conditions into .Itqut,lion (29).

L -. , -I
L , . ... • nlmn
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APPENDIX A

DETER-IINATION OF UNSTEADY PRESSURE DISTRIBUTION
FOR AN ISOLATED AIRFOIL

The determination of unsteady pressure distribution for a cascade

of airfoils as written in Equation (29) of Section 2.3 requires that the

integral terms be evaluated. For example, the first two terms contrib-

uted bv the bound vorticit': on the reference blade alone can be evalu-

ated by direct substitution of the solutions obtained from the special

case of an isolated airfoil, that is, a situation where the space-chord

ratio s/c approaches infinity. The solution for the isolated airfoil

case, hence, is necessary and can be a good check for the validity of

the present analysis.

In the limiting case of an isolated airfoil, it is reasonable that

all the effects contributed from blade-to-blade interactions are negli-

gible. As a result, all the terms having infinite suimations, that is,

torms such as

I k

> + (C + C2 - 2)

"l~l1

t',

$ ,

.- II~ - ,-.-.llii.-'. .... . . ' "=-r r == 'N -. L,
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I+~ (B 1 +1 B')

in the analysis can be shown to vanish mathematically as shov.-i in

Appendix C. Thus, Equations (29), (23), and (24) can be reduced tn

1

7. +++
M ~ +

I

+ +

u- % +

+ (c )
S+
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+

+±x +

+~ 4 - +

1 -4- + + +
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Mlade :itd b y it s wake vort iQ itv and is ident icalI to thI at der ived in

Re fore lie(2

For n cambe red a i r f o i I w i Lh an1g I c of inc i denco , tie inlduced lie 1 oc 1

t -+ +
ties v (x) zilmh1 v 0(x 1  reimain the same as written in Equaitions (34.a)

and ( 3! b) F or the purpose of solving the lproh 'em, several integrals

musIt be O am te1Ld, and their results i re listed in Appendix B3. Subst i-

tut ion of the boundary cond it ions and the initeral relationships from

Equations (8) through (14) of Append ix B gives

+) + ~ +
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+
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BV Utilizing the linear property of the analysis, the unsteady pressure

difference can be divided into two parts, namely, the parts due to dis-

turbanco velocities ud and v., respectivelv,

restecivkel,

~~ p

+ L1 rn d

CI'l 0' p

(2) ()
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+y 1) (45+Z( ,+) - 2 1 - + J(/))
m +2

By defining the function

F(jo,A) = T(w) J0) (X) A +() - o A iJ(0)

w~here

(2)) (2)

H (dia) + iH 1  (-4)

(2) * (2)
-Ho (') + ill - (w')

is the Iloriock function, the following identity is then derived:

(,-). .. ... . .. ...... .. . . . J,,(,) - i2J (A)) i (, )
S1(2)o (2) - 1

'hC ul,;Lcady jpressuru. J iffcrence doe only to the chordwise disturbance

is, therefore,

,I

__.. . .--.. .. - (r(, + -.-- z(N , +)

Iw 
I +

U

}-r~

+ 4-
V +



++ + ,

+ v + 1) 1-.,( + 2 1fCN)

(A- 2)

J 0 + N + (2)~ +(W)

+' LI N + (2- ) (2)3

+ (: (if (N + + H, (w)

c:1 - H ( (2)( I(A 3

i (2) + )

aliJ b' v *1a i n a tilc wilii hill Inn li brickelta; inll uIIit l te A-3),

ii: all '.-in l r tat onlAhijp c,11o 1w e lrt m d:
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H 0(2) (GO)
J (X) + (2) (Jo(x) - iJ 1 ())

i(H1l (w ) + iHo (w)

= S(wA) - ( a - )iJl( )

The unsteady pressure difference due only to the traverse disturbance is

then simplified and becomes

F vd + +

ivt = 2V - ((,A) + - 1) 2Z(" a )

IWmC d 13W me + o +

1 + iJl(A) (A-4)

The general expression for the unsteady pressure difference on an iso-

lated airfoil of symmetric parabolic arc operating at a nonzero mean

incidence angle in a velocity field that contains both a chordwise and a

transverse disturbance is obtained by combining Equations (A-2) and

(A-4) Thus,

A (=+) 2'" {Y ( + _ Z( ,o))
ivt d Ym +

m

- -+ C +

+ / +21 i -e
+ + 2y I -

+ n

+
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+ y (m(V- l)(4,+Z( , +) - 2 / - J )
mo

+
+ 2v~ I-So WX

+(y-) 2Z(Aa- + a0+ (A-5)

As a check for the validity of Equation (A-5), the isolated airfoil

case with "convected" disturbances is considered, that is, the distur-

bance is transported over the airfoil with a velocity W . With the sub-m

stitution of the result X = w, as discussed in Section 2.2,

Equation (A-5) is simplified to

2u P(+1 2d(Y (F(w) +- Z(w'o+))

pW eivt d 2 j e+m

+o +2 i +2 + -lo

++ m+ 2 Y Y ml

+ 2 V - S()
1 + o -

where F(',)) .11d S (4)) ar cop I Ox fun Ct i1 01-f red Ced f reqIIeny.
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Comparison of Equation (A-6) with that derived by Naumann (26)

shows a complete agreement and demonstrates the validity of

Equation (A-5) and, hence, the present analysis.

4i
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APPENDIX B

TABULATION OF INTEGRALS

Interal Relations in Cscade Analvsis

If l +x dxl

- 1x 1 -T for jr! 2 <1 Van Dyke (31)

- 1

2. /1-- 1 - for jrjK > 1
, 1 - (r - r:)

Henderson (18)

3. + Ie dX (2) (w) + i i (2) ) - i--
21

Durand (32)

I-. d\
+ r +

I -n 0 + ------ j

-1

for rj I
I rc

.i4
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i- x X12 - -+

2(cx 2) = in f- Reissner (331
u+ _l +2" +X - 1- I2 i- "

1-X I  dx+

5. (r x *+ sin- + -(o r)
5. ~~ YX1 (r -x ) - 2 +,'( ,r

-1

2 2+1
for Irl 2 

> I

where

2 ii/ r +33)

++

6. -1d + - r1

+ -1.,

6. -L :+:+,r)d + _ . r)

+1

7. + i+7. j _ d + = i ( ) Durand (2
I) . .. 2I

I
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Intcral Relations for Analvs is of [soLiatd Airfoil

SJ -i\x(

x 0
r 1+ x xe dxl

+)

. (- _ I . o 0 Z

+ iJ ()+ + -T(},+
+ +

0 +

10.J ( + 3 'a 0 (~

II

9 I __ -i (\xI 2 +7~,

ii 1 + x I  Tdx

i-x+ +-1

13 *.\ + : _ __

11. { " 1 9(oXl)dx 1  - ).22 Z(X\,+

I -1

1

1. xe ls:(u,Xldl =. --- - +

13. d -)

1 10-1

13 ieiii' II
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-11

+
where -1 " 1

. () =Bessel function of thc lost kind, order n
I1
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AL'PENITX C

UNSTEIADY 1PRESSUIRE 1)1 FERNCE EQUATI ON
FOR THEF CASE OF I NFIN ITL SPAC ING

,11C i i o (If Uns ted% Jv o sure di f fe reno e for ai bl1ade in a cas-

iliL' in A ditrh1 VeleeC it f fiel d is presented in Equat ion (29) The

klh ,t ive- of this appond i\ is to show that when the spac imq between

t'! 111~ in C L 1 , C.V 111,H L Li1 rL'CULCS to ie l~ fo.1 r iltl iSOI LL

w hic:1 ,%is dor wed L)1 hi ispi in-ht f CL al.

1; ,~ I I m

1 i:7 C., L

i~~~ it I t .i1.-
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++
A(' ,r) 2 tan -4r+  + I

where r represents gc, hc, gl' and hI * Th~n

+ - 1- +

ir (+,r) = 2 tan -+3+ r - 1;+i r) _-m +i

S s

2~ 1____ r +

S j 

r +r

-] /i' 17 r ]

- - tin[ t -i~ / - _

-

1 r h;on ,d r1), 1It th

1)y .. .h I +i

-i1Ii ,1 -- - /r+=

I Ci "l

vmmft
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+ L

rhis ladS, to

t im LI~+ )+ .'C,,h)-1( . 1  (j ( 1)3

12rom t he rOSL1tS preseflt ed above, ft i s ev ident t hat t he inf in it ive

SuIMMation.- as listed in Tablo 1 and contaiincd in Equations ('29) ,(23)

aad 2-(are ll qul to zero wh'fen s

kEith toereslIts, Equation (29) of Chnptor 11 reducets to

+ I/ 'o L)~ +

A-T +: 0 -
0~~~~~~ 4- +c y1-x (

ii 0

-11
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